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COMMENT 

Slowing-down processes in random systems 
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Abstract. We make a conjecture for the temperatures at which the slowing-down processes 
occur in random systems. The estimated values in simple models a re  in good agreement 
with the existing simulations. 

There is active interest in the field of the dynamics of random systems (Harris and 
Stinchcombe 1986, Rammal and Benoit 1985, van Hemmen and Morgenstern 1987, 
Ngai 1980). One of the common features of the so-far investigated systems is the 
non-exponential relaxation process (or extremely long relaxation time). This 
phenomenon is characteristic mainly for the low-temperature phase and  is often referred 
to as slowing down or freezing. The temperature at which this slowing down occurs 
is more or less well defined and characteristic for the investigated system. In this 
comment we give a conjecture for this freezing temperature and try to explain its origin. 

For characterising a random variable i t  is generally not enough to treat the average 
value only. This may be satisfactory to obtain the concrete value of a self-averaging 
quantity but not to describe, e.g., the analytical properties. (For example, the so-called 
Griffiths (1969) singularity in the diluted Ising ferromagnet is thought to be due to a 
subsystem which occurs with exponentially low probability (Schwartz 1978j.j 

It means therefore that we have to take into consideration the whole distribution. 
It can be done by treating, e.g., the several moments. 

We investigate in detail the random-bond Ising model on hypercubic lattices with 
the following distribution function for the bonds: 

( 1 )  

Here J '  = 0 or J '  = J and we refer to the diluted ferromagnet and the + J  spin glass, 
respectively. 

The quantity which we treat is the magnetisation (and of course its moments) since 
it serves as a type of order parameter and  its behaviour may be characteristic for the 
whole system. In the * J  spin-glass case the second moment is thought to s e n e  as 
order parameter near p = and our consideration involves i t  too. 

p (J, ,  1 = p 6  ( J , ,  - J 1 + ( 1 - p 1 6 ( J , ,  + J ' )  . 

Let us define the moments in the following way: 
.- 

Ak = lim Akh = lim ( S , ) ' .  ( 2 )  

Here and ( ) denote the configurational and thermodynamic averages, respectively, 
and  N is the number of spins. The boundary conditions are thought to be involved 
in the limiting process and  they d o  not alter the following argument. After averaging, 

h. - X  N -a 

- 
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the system is homogeneous and  the sites i do not play any special role and  we can 
express AkN in a more detailed form: 

= B k N / Z k  (3)  
where (mn) denotes the nearest-neighbour (or generally the interacting) pairs, Z is the 
partition function and the definition of BkN is clear from (3 ) .  ZPk can be expanded 
into a power series of In Z and we can express the moments as 

The next step could be the interchange of the summation and  the limiting process but 
it is generally not allowed. In the following we investigate this question in some detail. 

First of all we have to realise that the BkN values are independent of the summation 
index j (the averaging and  the summation are always interchangeable). When N is 
large enough then the (In Z)' = N' asymptotic form can be used since the free energies 
are extensive. So we are allowed to interchange the two processes if B,,vNJ+O as 
N + a3 for all the possible j values, i.e. if BkN goes to zero faster than any power of 
N. For high enough temperatures the magnetisation is zero (above the highest possible 
critical temperature of the different bond relisations) and we get zero for the B k N  

values too. Lowering the temperature we reach a region where some of the bond 
realisations already have non-zero magnetisation but their probability is rather low 
(e.g., because the average bond strength of the realisation differs from the average of 
the distribution). These low probabilities always go as exp( -aN)  where a > 0. At the 
same time the BkN values are exponentially large, exp(bN) ,  since BkN has the form 
BkN L- (s)Z and Z is exponentially large. As far as ( b  - a )  < 0 we are allowed to 
interchange the two processes. Now we have to realise that exactly the same exponent 
( b  - a )  occurs in the average of BkN (i.e. in G) and we check the sign of ( b  - a )  
through this average. Let us introduce a new annealed system which has the partition 
function Z* (which we will call the effective system): 

k 

( m n )  a = l  

The critical temperature of this effective system Tk determines whether % is zero. 
(The calculation of the critical temperatures can be done in the same manner as by 
Kasai and Syozi (1973) . )  If T (  = 1 / p )  > Tk then = 0 whereas for lower temperatures 
BkN is non-zero since above Tk we have to average over the whole phase space. In 
other words it means that ( b  - a )  is negative above this critical temperature of the 
effective system. 

As a conclusion we can say that as far as T >  Tk we are allowed to interchange 
the summation and the thermodynamic limit in (4) and  we can even calculate the A, 
values which are equal to zero in this case. However, i t  does not mean that below Tk 
the AA - s are non-zero. I t  means only that the series ceases to be absolutely convergent 
and we may find rather large fluctuations during the limiting process. 

Naturally the question arises whether these fluctuations, which appear in  an 
artificially constructed series expansion, can be seen in a real system too. We think 
that the answer is affirmative and we argue in the following that the fluctuations of 
the series appear as slowing down in the dynamics of the system. 

L_ 
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To see this connection we have to keep in mind the physical basis of these 
fluctuations. We have found temperatures below which some bond realisations have 
a non-zero ‘order parameter’, i.e. there are frozen spins in the systems and as we 
increase the probability of their appearance we reach a value where they cause the 
above fluctuations at the given temperature. In  a computer simulation we have a 
concrete bond realisation which, with high probability, does not belong to the above 
‘critical’ realisations but we can see the slow relaxation in the system. 

To resolve this contradiction we have to realise that some parts of the system may 
behave as the above special realisations although the whole system does not. This 
means that some spins behave as a ‘superspin’ (as a whole), i.e. there is a local order 
in these parts of the system and  they relax in a different way to the other parts. The 
relaxation of the whole system will be influenced by these parts according to the proper 
probability weights, i.e. according to the size of them. To obtain realistic weights we 
have to regard a large system or must average over several samples. We would like 
to emphasise that the slowing down should appear mostly if the systems are not too 
small. 

Another question is whether we have such well defined ‘critical’ temperatures or 
we can see a continuous growing of the relaxation times. At these temperatures a new 
type of relaxation should appear which can be seen, e.g., in the spectrum of the 
relaxation times. In the early simulation (see, e.g., Kirkpatrick 1977, 1980) these 
temperatures were identified as critical temperatures. 

On the other hand these fluctuations may have some connection with the occurring 
singularities as we shall now discuss in some detail. 

Z* is defined in such a way that the corresponding system contains no frustration, 
i.e., we are allowed to use the Griffiths inequality (Griffiths 1972) and we arrive at a 
series of the Tk - s monotonically increasing with increasing k. On the other hand 
Tk < T, for all k - s (where T, is the critical temperature of the system where J ’  = J )  
which means that T, is an  accumulation point of the Tk - s. This is exactly the same 
temperature at which the Griffiths singularity occurs (Griffiths 1969, Schwartz 1978). 
Although it was found in the field dependence we guess that the accumulation of these 
critical points relates to the same physical phenomenon. 

This conjecture can be more or less checked in computer simulations. Comparing 
the Tk values to the slowing-down temperatures of simulations we have to choose the 
appropriate k, since the largest fluctuations occur at  this temperature, e.g., in the fifth 
moment at  T5.  

In diluted ferromagnets the magnetisation is the most widely investigated quantity 
(at least in the relaxation studies) which means that we have to compare the observed 
slowing-down temperatures to TI.  The several TI values are depicted as a function 
of the concentration in figure 1 for the square lattice. We can see that T,>O for all 
non-zero p - s  even for p < p c  (where p c  is the threshold value of the percolation 
problem at the given lattice; on the square lattice p c  = i). Such a slowing-down process 
below p c  was already suggested by Henley (1985) and  Rammal and Benoit (1985) and  
its existence was checked in the site-diluted case by Chowdhury and Stauffer (1986). 
The concrete value of the slowing-down temperature was estimated by Jain (1986) 
only. He investigated the bond-diluted case at the threshold concentration and found 
TI = 0.4Tc which is in good agreement with our  OST, value since the former one 
corresponds rather to a lower bound than to an  exact value. (Since the increase of 
the relaxation time begins very slowly it is not an  easy task to observe the exact value 
of the temperature and we can give only a lower bound from the simulation data.) 
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Concentration of posit ive bonds 

Figure I .  TI and  T, plotted as  a function of the concentration of positive bonds,  indicating 
7, for a ?D bond-diluted k i n g  model on  the square lattice (curve A )  and  TI (curve B )  
and  T2 (curve C )  both for a 2~ * J  lsing spin glass on  the square lattice. 

In the i 5  spin glass we have different relevant Tk values depending on the concrete 
concentration. In figure 1 we see T, and  T7 as a function of the concentration of 
positive bonds. The simulations were made mainly at p = and we may compare the 
concrete values at this p only. We obtain T2 = 1.325 in two dimensions and T2 = 2.15 
in three dimensions. These values are in good agreement with the temperatures where 
the relaxation becomes very slow (Kirkpatrick 1977, 1980, Ogielski 1985). 

As a conclusion we made a conjecture for the temperature of the appearance of 
slowing-down processes and found good agreement with the existing computer simula- 
tion data in Ising models. These temperatures could be identified as the critical 
temperatures of annealed-like effective systems. We argued that the appearance of 
some ‘critical’ subsystems are responsible for the slowing-down processes. We believe 
that similar arguments hold for a wider class of disordered systems. 

I thank L Sasvari for many fruitful discussions. 
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